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The use of magic integers in phase determination is examined in the light of the theory of Main [Acta Cryst. 
(I 977). A33, 750-757]. The integers may be used in the economical search of an n-dimensional function of 
the phases. An interpolation procedure in the n-dimensional phase space allows the use of integer sequences 
of quite high error, with a consequent reduction in the magnitudes of the integers used. The number of 
variables to be associated with the magic-integer sequences is also examined. It is found that this number has 
virtually no effect on either accuracy of phase representation or on computing time. The range of one of the 
variables can be restricted, where necessary, in order to define the enantiomorph, thus using several phases 
simultaneously to give a strong enantiomorph definition. A convergence procedure is described for choosing 
the phases to be represented by magic integers. Magic integers may also be used to choose sets of phase 
values for the reflexions used in MULTAN to start phase determination. This replaces the more usual 
quadrant permutation method and results in large savings in the number of starting sets to be explored. 
MULTA N is thus made more powerful for the same computing time as before. 
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Introduction 

After the initial successes of the use of magic integers 
by White & Woolfson (1975) and Declercq, Germain 
& Woolfson (1975) for phase determination, Main 
(1977) in paper XI of this series examined the nature 
of the phase errors involved in the magic-integer repre- 
sentation and gave a recipe for generating efficient 
magic-integer sequences. This paper examines some of 
the techniques used in the application of magic integers 
in the light of the theory in paper XI. 

Exploring phase space 

One of the uses of magic integers is to represent a large 
number of phases in terms for a small number of 
variables and then to compute a figure of merit for the 
phases. The figure of merit is plotted as a function of 
the variables used, called a ~ map by White & 
Woolfson (1975), and the peaks in the ~ map indicate 
the best phases to use in subsequent calculations. The 
economy of variables in such a calculation is very 
large, with consequent enormous savings in computer 
time, and it becomes possible to test thousands of 
different phase combinations by a single Fourier 
transformation. 

To investigate the characteristics of this process, it is 
convenient to regard it as follows. If there are n 
phases in the calculation, the figure of merit evaluated 
is essentially an n-dimensional function. We are there- 
fore looking for the point in this n-dimensional space 
which corresponds to the global maximum (or 

minimum) of the function. Instead of evaluating the 
complete function, this n-dimensional space is ex- 
plored along a family of parallel straight lines by the 
use of magic integers as explained by Main (1977). 
These lines will not necessarily go through the function 
maximum, but at least one of them should go near 
enough to the maximum to detect its presence. It is 
possible that several lines pass close to the maximum. 
In this case, several maxima will appear in the v/map, 
each one corresponding to a point on one of the lines 
close to the single maximum in n-dimensional space. 
These peaks in the v/map will usually be in apparently 
unrelated positions and yet will lead to very similar sets 
of phases, especially after phase refinement. This effect 
is commonly observed (P. S. White & S. E. Hull, 1975, 
private communication) and it would be an advantage 
if such related solutions could be recognized at the 
outset. 

In order to illustrate this behaviour, let us take an 
order-4 Karle-Hauptman determinant (Karle & 
Hauptman, 1950) as a simple function of the phases 
which we can evaluate. The magnitudes of the reflexions 
in the determinant are taken to be all the same and 
equal to U, and the phases are expressed in terms of 
the magic-integer sequence 4 6 7 as shown in Table 1. 
The three phases in the body of the determinant are 
represented by a single variable, x, and s~, s 2, s 3 are the 
signs (+ or - )  of the magic integers used. The symbols 
a and fl represent phases which can be set at particular 
values for each calculation. In the expansion of the 
determinant there are four terms of the kind cos(mix + 
m2x + max) and three involving the sum of four phases 
as cos(mix + m2x + m3x + maX), where the m i are 
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Table 1. Karle-Hauptman determinant used to investigate the 
behaviour of magic integer sequences 

Magnitudes Phases 

1 U U U 
U 1 U U 
U U 1 U 
U U U 1 

I o " P 
0 (03 (=s37x)  (02 (=s26x) 

-(Ic -(03 (=  - s 3 7 x  ) 0 (0, (=s ,4x )  
- / /  -(02 (= -s26x) -(0, (-- -s, 4x) 0 

Table 2. Indices of the terms in the expansion of the 
determinant shown in Table 1 

st s 2 s 3 Indices of  triples Indices of  quartets 

+ - + 4 6 7 17 10 11 13 
+ + -  4 6 7  9 2 3 13 
+ + + 4 6 7  5 2 11 1 
- +  + 4 6 7  3 10 3 1 

integers. After collecting like terms, these are both of 
the form cos(mx) where the size of m depends upon the 
signs s 1, s 2, s 3 in the determinant. Table 2 shows the 
values of the indices m which may be obtained from 
different sign combinations. 

If a = /~ = 0, the value of the determinant is a 
maximum when all other phases are zero, i.e. when x --- 
0. With U =  0.35 and the signs s 1, s 2, s 3 as - + + ,which  
minimizes the highest index in the expansion, the value 
of the determinant is plotted as a function of x in Fig. 1. 
The map is centrosymmetric; so only half  of it is shown. 
As predicted, the absolute maximum is at x = 0, but 
subsidiary maxima appear at x = 0.17, 0.30 and 0.47 
cycles. These can be explained using the construction 
described by Main (1977) in which the three equations 
q~ = 4x, ¢Pz = 6x, (03 = 7x [all values of ¢p reduced 
modulo (1)], represent a family of parallel straight 
lines in three-dimensional phase space. A section 
through the origin perpendicular to the fines is shown 
in Fig. 2, giving the point where each line cuts the 
section. The value of x at each unique point and its 
distance from the origin can be calculated from simple 
geometry and these are given in Table 3. The remaining 
points in Fig. 2 are centrosymmetrically related to 
those in Table 3. The maximum of the determinant 
occurs at the origin (x = 0). The points, A, B and C are 
the closest points on adjacent lines to this maximum 
and these give rise to the three subsidiary maxima seen 
in Fig. 1. The actual values of x at A, B and C are 
marked on the figure and it can be seen that the 
maxima occur very close to the marked values. More- 
over, the heights of the maxima correlate with the 
distances of A, B and C in phase space from the 
absolute maximum at x = 0. 

This calculation was repeated with the signs sl, s 2, s 3 
in the determinant as + - +, thus maximizing the 
highest index in the expansion of the determinant. The 
resultant plot of determinant value as a function of x 
is shown in Fig. 3. Because of the higher maximum 
index (now 17 instead of 7), the 'resolution' of the map 

has been increased over that in Fig. 1. The x values of 
all the points in Fig. 2 are marked on the map and it 
can be seen that they correspond to the maxima of the 
function. In effect, we can see the next-nearest neigh- 
bours to the origin point O. The two points G and I 
have similar x values and are not resolved in Fig. 3; 
otherwise all other points correspond to discrete 
maxima. 

In this simple case, the phases represented by any of 
the maxima in Fig. 3 should be capable of refinement to 
their values at the absolute maxima at x = 0. Clearly, 
this is the source of the closely related phase sets from 

0 - 5 0  

t 
A 

0 -25 
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0 .00  I 0125 I I 

X ~ 0150  

Fig. 1. Plot of  value of  determinant,  A, as a function of  magic- 
integer parameter  x. The determinant  is that defined in Table 1 
w i t h U  = 0 . 3 5 ,  t t = f l = 0 ,  s , s ~ s  3 = -  + +. 
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Fig. 2. Section perpendicular  to the family of  lines created by 
(0~ = 4x, (02 = 6x, 93 = 7x, mod (1), in phase space. 
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Table 3. The value of x and distance from the origin of  Table 4. Phases (0) corresponding to points in phase 
each point in Fig. 2 space shown in Fig. 2 when 0 is at x = - 5 / 3 4 3 4  

Value of x Distance from origin 
Point (× 101 cycles) (cycles) 

0 0 0.000 
A 30 0-299 
B 47 0.359 
C 17 0.372 
D 24 0.545 
E 13 0.572 
F 41 0.597 
G 37 0.666 
H 7 0.717 
I 34 0.744 

the ~ map. If the maximum in phase space is not at the 
origin as assumed in this example, the section in Fig. 2 
can be moved parallel to itself so that  it once more 
contains the maximum.  This has the effect of  changing 
the x values of  all the lattice points in the section by a 
cons tant  so that  the relative x values are the same as 
before. Instead of  looking for a single peak in the 

map, it is now possible to search for a group of  
related peaks whose relative x values can be predicted 
from the part icular  magic-integer sequence in use. It is 
merely an exercise in n-dimensional  geometry to 
calculate these relative values of  x for any magic- 
integer sequence and thus to predict which peaks in the 

map correspond to closely related phase sets. 

Interpolation in phase space 

Now that  the de terminant  value as a function of  the 
magic-integer parameter  x can be explained in all its 
detail, it is interesting to see the effect of  moving the 
de terminant  max imum to different points in phase 

Point O A X 

x -0.001 0.296 
~01 -2.1 65.6 31.7 
(02 -3.1 -81.5 -42.3 
~P3 -3.7 24.9 10.6 

space. The phases which maximize the de terminant  are 
those which give all the triple phase products  in the 
expansion of  a phase of  zero. For  example, if the 
values of  ct and fl (defined in Table 1) are set at 10.6 ° 
and 42.3  ° respectively, the de terminant  will have a 
maximum value when ~p~ = 31.7 °, (02 = 42"3 ° and ~P3 = 
10.7 °. If the origin, O, in Fig. 2 is at x = - 0 . 0 0 1 ,  then 
the de terminant  max imum is at the point  X and is 
exactly midway between the lattice points O and A. 
This means the required phases are represented equally 
as well by x = - 0 . 0 0 1  (corresponding to the point  
O) and x = 0 .296  (corresponding to A). This should 
give rise to two principal maxima in a plot of  deter- 
minant  value as a function of  x. With the sign combi- 
nation + - + (defined in Table  2) for the signs of  the 
magic integers, this plot is shown in Fig. 4. It can be 
seen that  there are, indeed, two principal  max ima  at the 
predicted values of  x. Also, all the subsidiary maxima  
can be explained in terms of  the nearest  neighbours  of  
the points O and A in Fig. 2, as described in the 
previous section. 

This result gives rise to the possibility of  inter- 
polat ion in phase space between the points corres- 
ponding to maxima  in the magic-integer map.  In the 
example jus t  given, the phases corresponding to the 
principle maxima in Fig. 4 are shown in Table 4. Since 
the maxima are of  equal height, it is reasonable  to 
assume the max imum in phase space is midway 
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Fig. 3. Plot of value of determinant, A, as a function of magic- 
integer parameter x. The determinant is that defined in Table 1 
with U=  0-35, ct=/3 = 0, s t s 2 s 3 = + - +. The x values of the 
points in Fig. 2 are marked. 

- 0 " 5  0"0 X " - ~  0 5 

Fig. 4. Plot of value of determinant, A, as a function of magic- 
integer parameter x. The determinant is that defined in Table 1 
with U = 0-35, ct = 10.6 °, fl = 42.3 °, s~ s 2 s 3 = + - +. 
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between these points and this leads directly to the 
phase values shown in the final column in Table 4. 
These are precisely the values of ~1, ~2 and ~3 which 
maximize the determinant. Note that these phases 
cannot be represented exactly in terms of the magic 
integers, but have been obtained by interpolation in 
phase space between two points which are represented 
by magic integers. 

A second example to illustrate interpolation is 
obtained by taking a = 42.3 ° and fl = 49.4 ° . The 
determinant is now maximized by ~ = 7-1 °, ~02 = 
49.4 ° and (93 = 42.3 ° . This is the point Y in Fig. 2 
when the origin, O, is at x = 0.001. Y is equidistant 
from the three points O, A and B which can be repre- 
sented by magic integers. The plot of determinant value 
against x should therefore show three equal maxima at 
the x values of O, A and B, i.e. 0.001, 0-298 and 
0.466 respectively. Fig. 5 shows this plot and confirms 
the prediction. As before, all the subsidiary maxima 
can be explained in terms of the nearest neighbours of 
the points O, A and B in the section in Fig. 2. Clearly, 
the point in phase space which is equidistant from the 

.phases represented by the three principal maxima 
yields precise values for the phases which maximize the 
determinant. These are shown in Table 5. 

These examples are very contrived but, in principle, 
interpolation in phase space is possible in the general 
case of any magic-integer sequence of arbitrary length. 
However, it remains to be shown that this can be made 
a practical extension to the magic-integer technique. 
Such a development would be very valuable since it 
would be possible to derive phases which are more 
accurate than those given directly by the magic integers. 
In effect, the multiple solutions from the ~, map would 
be combined to yield a single set of phases which is 
more accurate than any of the sets obtained directly 
from the map. For long sequences this has a dramatic 
effect on the magnitudes of the integers which must be 
used. For example, if 100 phases are represented with 
an r.m.s, error of about 62 °, the theory in paper XI 
shows that the integers must be of the order of 10 ~4. 
This is clearly impractical. On the other hand, if the 
r.m.s, error of the sequence can be allowed to rise to 
82 °, the integers need only be of the order of 102. 

The V/map 

The ~ map as used by White & Woolfson (1975) is 
essentially a figure of merit for a large number of 
phases evaluated as a function of a small number of 
magic-integer variables. The form they used was 

i/l(x,y,z) = ~ IElrE2rE3rl 
l" 

x cos {2rc(Hrx + Kry  + L r z  + b)} ,  (1) 

which is a measure of the internal consistency of Y:2 
relationships as a function of three variables. Clearly, 

Table 5. Phases (o) corresponding to points in phase  
space shown in Fig. 2 when 0 is at x = 4/5151 

Point O A B Y 

x 0.001 0.298 0.466 
~t 1.1 68.9 -48-8 7.1 
(92 1.7 -76.7 -73-1 -49.4 
~o 3 2.0 30.5 94.5 42.3 

any kind of phase relationship which can be expressed 
in terms of trigonometric functions can easily be 
incorporated into the ~, map. It is not limited to E 2 
relationships only. However, the ~' map can be ex- 
pressed as a function of any number of magic-integer 
variables and it is of interest to determine the optimum 
number. 

Paper XI gives the lower bound of the r.m.s, error o f  
a magic-integer sequence as 

l) },,2 
2 + 1) i (n + 1)i21 

• i = 1  

I/(n- ~) 

radians. (2) 

As an efficient sequence has an actual r.m.s, error only 
slightly greater than this, equation (2) can safely be 
used to estimate actual phase errors. 

Let there be M points in the ~ map in N dimensions. 
This gives a map with M ~/N points in each direction. 
The actual number of points chosen in each direction 
will normally be a simple function of the corresponding 
indices of the Fourier coefficients. In this case, a con- 
venient function to take is 

M l m  = a × r.m.s, index (3) 

where a is a small integer. 
It will be expected that 

r.m.s, index = p × r.m.s, magic integer, (4) 

/ 

1 | 

- o.s c~o x ~ o-s 

Fig. 5. Plot of vchm of determinant, A, as a function of magic- 
integer parameter x. The determinant is that defined in Table 1 
with U= 0.35, a= 42.3°,fl = 49.4°,s~ s2s 3 = + - +. 
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where p is a function of the average number of phases 
represented by magic integers in each Fourier coefficient 
and the number of dimensions, N, of the map. 

The r.m.s, magic integer is obviously given by 

1 m~ • (5) 
n i = l  

so from (2), (3), (4) and (5) we obtain 

~n(n--1)}l/2~apF[(n+l)/2]}l/~n-l '  
A~0,b = 2 t n  ~ + 1) I~ -nl72-Ml/N (6) 

The expression can now be evaluated for realistic 
values of the parameters involved to see which kind of 

map will lead to the smallest r.m.s, errors in the 
phases. Values ofp  depend upon the particular problem 
but, for E 2 relationships, we may take p = 1-5 for N = 
1 , p =  1 f o r N - - 2 a n d p = 0 . 8 f o r N = 3 .  Theva lueo f  

p decreases as N increases because the more variables 
that are used to express the phases in each relationship, 
the easier it is to avoid the addition of integers to 
produce high values of the indices. Table 6 shows Aqh b 
calculated from (6) with M = 4096, a = 5, Nn = 18 
and different combinations o fp  and N. Clearly, A~0~b is 
quite insensitive to variations in the parameters and it 
matters little whether the ~ map is evaluated in terms of 
one, two or three variables. Separation of variables 
becomes more important as the number of phases in 
each relationship increases but, on the other hand, 
Atpt b becomes even more insensitive as n increases. It 
appears therefore that the number of dimensions of the 
~, map is merely a matter of programming convenience 
and personal taste. 

Choosing reflexions for the ~ map 

Declercq, Germain & Woolfson (1975) described an 
algorithm for choosing the reflexions which contribute 
to the ~ map. These were divided into two groups - the 
primary set and the secondary set. Phases in the 
secondary set are defined through E 2 relationships 
containing two phases from the primary set and 
primary-set phases are expressed in terms of the magic 
integers. An improved algorithm has been used suc- 
cessfully and will be described here. It is similar to the 
convergence procedure used by MULTAN and 
attempts to maximize the weighted sum of phase 
relationships which contribute to the ~, map. 

Initially, allreflexions are put in the primary set. 
The effect of removing each reflexion in turn from the 
primary set is then examined. If the phase of the 
reflexion can be defined through phase relationships in 
terms of primaries it can become a secondary; other- 
wise it will be eliminated. In either case other reflexions 
may have to be eliminated because they can no longer 
be defined as secondaries. The elimination of reflexions 
results in the elimination of all phase relationships to 
which the reflexions contribute and the weighted sum 
of all eliminated relationships is recorded. At the end of 
examining each primary reflexion in this way, that 
reflexion which results in the smallest loss of phase 
relationships is taken out of the primary set. If no phase 
relationships are eliminated by removing any reflexion 
from the primary set, that reflexion with the lowest 
weight of relationships associated with it becomes a 
secondary. Reflexions are removed from the primary 
set in this way until the required number of primaries 
is reached. The usual checks are made to ensure that 
the origin can be uniquely defined by the remaining 
primary reflexions. The weight of a Z z relationship is 
taken as KI~(K)/IoO¢) where K = 2N-~/21EIEzE3I and 
similar expressions pertain for other types of relation- 
ship. 

It has been found (Declercq & Germain, 1976, 
private communication) that this algorithm usually 
results in the same number of primary and secondary 
reflexions as before, but increases the number of phase 
relationships with which they are associated. This 
means the phases should be better defined by the 
q/map. 

If the enantiomorph is not already fixed by the 
space group or other means, only cosine functions will 
appear in the expression for the ~, map, making the 
map centrosymmetric. Enantiomorph definition can 
then be achieved by computing only the asymmetric 
unit of the map instead of the more usual practice of 
restricting the possible values of a single, properly 
chosen phase. This means that many phases will be 
used simultaneously to give a strong enantiomorph 
definition. The importance of this has been pointed 
out by Hauptman & Duax (1972), but the method they 
describe is only easily applicable to a limited number of 
space groups. The technique described here is quite 
general, although the reflexions used are not so care- 
fully chosen as in the Hauptman & Duax method. 

Magic-integer phase permutation 

Table 6. Values of A~Olb (o) obtained from equation (6) 
with M = 4096, a -- 5, Nn = 18 

p N 1 2 3 

0.8 56.5 
1.0 55.8 57-1 59.0 
1.5 57.1 

A further use of magic integers which has already 
proved to be very valuable is in the generation of 
starting sets of phases for MULTAN. Until now, the 
unknown phases among the reflexions chosen to start 
the phase determination have been given all combi- 
nations of the values +hi4, +3n/4. For n unknown 
phases, quadrant permutation can give rise to 4" sets 
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of phases. This number increases rapidly with n and so 
severely limits the number of unknown phases which 
can be included. 

Instead of the n unknown phases being given values 
by quadrant permutation, let them be represented by a 
magic-integer sequence of length n, i.e. let the phases 
be given by 

~o i : mix mod (1). (7) 

It is now possible to choose any number of sets of 
phase values by assigning the appropriate number of 
values to the magic-integer variable, x, at equally 
spaced intervals in the range 0 < x < 1. 

The question now arises as to how many sets of 
phases should be generated. Each set of phase values 
can be plotted as a point in n-dimensional.phase space 
and these points will lie on the lines represented by 
the equations (7). A sensible interval of x will give rise 
to points which have about the same separation in the 
direction of the lines as the separation of the lines 
themselves. This should result in an even distribution of 
points over the whole of the phase space. The average 
separation of the lines may be taken as the diameter of 
the hypersphere of equivalent volume to the Voronoi 
polyhedron which was fully described in paper XI. 
The radius of the hypersphere is given as 

= 1 F[(n + 1)/21] 1/(.-,) 
a 

i = 1  

Now, when x changes by a small amount 6x, the 
phase ~0 i changes by a corresponding amount 6~0i given 
by 

O~oi = mi 6x. (9) 

The distance moved in phase space is therefore 

i=I i=I 

It follows that, in the interval 0 < x < 1, the total length 
of the lines generated is given by 

s = m i . (11) 
i = 1  

From (8) and (11), the interval of x which will give 
an even distribution of points in phase space will be 

2a 2 ~F[(n  + 1)/2]} ' /(n-t)  
A x =  - -  = (12) 

s ~ I [Z mE] 'u2 

For the magic-integer sequences and values of n of 
practical interest, the interval of x given by (12) leads 
to approximately the same number of phase sets as the 
following simple algorithm. Let the phase ~0,, associated 
with the largest integer m,, take on values from n/4 to 
2rim, - 7r/4 radians at intervals of n/2, i.e. it takes on 
the four values +n/4, +3n/4 repeatedly, for x in the 
range 0 to 2n radians. Each of these phase values leads 

to a unique value ofx  which, in turn, is used to generate 
the remaining phases in the set. Clearly, this will always 
generate 4m n sets of phases. In MULTAN,  the phase tp, 
is chosen as the phase which is restricted in value to fix 
the enantiomorph (where necessary), in which case 
only the appropriate values of ~0n are used. 

It is now necessary to examine the errors in the 
phases when they are generated in this way. If the 
correct starting phases are represented by a point in 
phase space, at least one of the points generated by 
the above algorithm must be acceptably close to this. 
The expected distance between the correct point and 
the nearest generated point gives the expected sum of 
the squares of the errors in the starting phases. This, 
in turn, leads to the r.m.s, error in the phases. The value 
of this clearly depends upon the actual magic-integer 
sequence used but, employing the same ideas as set out 
in paper XI, the lower bound of the r.m.s, error can be 
obtained as follows. 

The number of phase sets generated is 4m,. The 
volume of phase space associated with each set is 
therefore 

1 
V -  (13) 

4m n ' 

where the dimensions of the space are measured in 
cycles. The lower bound of the r.m.s, error will be 
obtained when this volume is assumed to be an n- 
dimensional hypersphere. The volume of such a hyper- 
sphere of radius a is given by 

2 a  n ~n/2 
V -  (14) 

n /'(n/Z) 
Paper XI gives the mean square distance of a point 

in the hypersphere from its geometric centre as 

- -  n a  2 

d 2 - • (15) 
n + 2  

This gives the sum of the squares of the expected 
errors in n phases. The lower bound of the r.m.s, error 
of a typical phase is therefore given by 

' Aq% = 2n radians. (16) 

From (13), (14), (15) and (16), the lower bound of 
the r.m.s, phase error is given by 

.4(Ol b = 
{ n }'/2 {F[ (n+2) /2]  } I/n 

2 ~++2 4mn radians. (17) 

Provided the magic-integer sequences used are set up 
as described in paper XI, the actual r.m.s, errors in the 
starting phases should be only very little more than the 
lower bound given by equation (17). In the case where 
n = 1, m, will be taken as 1 and (17) gives the exact 
r.m.s, error of 26.0 °. 
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A simple illustration of magic-integer phase permu- 
tation is given in Fig. 6. The 16 phase combinations 
produced by quadrant permutation on two unknown 
phases are plotted in Fig. 6(a). A convenient magic- 
integer sequence of length two is 2 3 and the set of lines 
generated by the equations (7) using these integers is 
shown in Fig. 6 (b). If ~02 now takes only the four values 
+_7r/4, +_3z~/4, the corresponding values of q~ are 
shown plotted in the diagram. Clearly, there are now 
only 12 phase combinations instead of the 16 in Fig. 
6(a). There are two reasons for this reduction in 
number. The first is that the r.m.s, error of the magic- 
integer phases is slightly higher than the error of the 
phases produced by quadrant permutation. Equation 
(17) shows that for n = 2 and m n = 3, the lower bound 
of the r.m.s, error is 29.3 °. This is to be compared with 
an r.m.s, error of 26.0 ° for quadrant permutation. 
There is ample evidence that the r.m.s, error of the 
starting phases can be allowed to rise, because 
MULTA N often produces more than one set of phases 
from which the structure can be obtained. These 
multiple solutions will be less frequent when the 
starting phase values are spaced more widely apart. 
The second reason for a saving in the number of phase 
sets by magic integers can be seen from Fig. 6. The 12 
sets generated by magic integers obviously produce a 
much more closely packed lattice in phase space than 
the 16 sets in Fig. 6(a). Phase space is therefore 
covered in a more efficient manner and this will be true 
of any magic-integer sequence set up as described in 
paper XI. 

The reduction in the number of phase sets becomes 
very large as n increases. Table 7 compares the 
number of sets produced by quadrant permutation with 
those produced by two different sets of magic integer 
sequences. The sequences chosen are those based on 
the geometric progression 1 2 4 8 16 . . .  of common 
ratio r = 2 and the Fibonacci series 1 1 2 3 5 8 . . .  of 
limiting ratio r = 1.618. These are given in Tables 2 
and 3 of paper XI respectively. Also shown in Table 7 
is the lower bound of the r.m.s, error of the starting 
phases as calculated from equation (17). 

The magic-integer sequences actually used in 
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Fig. 6. (a) The 16 phase sets generated for two unknown phases 

by quadrant permutation. (b) The 12 phase sets generated for 
two unknown phases by magic-integer permutation (magic- 
integer sequence is 2 3). 

MULTAN are those for which r = 2. The saving in 
computing time for the larger values of n is quite 
dramatic, making the program much more efficient. 
Alternatively, for the same computing time as before, 
additional reflexions can be included in the starting set 
thus making MULTAN more powerful. It is not yet 
known how high an error can be tolerated in the 
starting phases, but all the tests carried out to date 
indicate that the errors produced by the r = 2 
sequences are acceptably low. No structure has been 
found which the new MULTAN will not solve that 
could be solved before. On the other hand, a number 
of structures have been determined with the new version 
which could not be solved in a reasonable amount of 
computer time with the older program. As an example, 
Margulis & Lessinger (1977) solved N-acetyl colchinol, 
C20H23NOs, P2~, Z = 4 using magic-integer permu- 
tation after many trials with quadrant permutation 
had failed. Using 260 E's and the complete set of E 2 
relationships, they generated 504 sets of phases. The 
most likely of these, as indicated by the combined 
figure of merit, gave a map which contained 46 out of 
the 52 non-hydrogen atoms in the asymmetric unit. The 
highest false peak was 26th in order of height. The 
same starting set of phases would have given rise to 
8192 sets by quadrant permutation. Of the known 
structures that have been used as tests, two are of 
interest because previous tests of MULTAN on them 
have already been reported (Lessinger, 1976). They are 
3,3- dimethyl- 4, 5,9,10,11,12- hexacarboxymethyltetra - 
cyclo[7,2,1,02,4,02,8]dodeca-5,7,10-triene, referred to as 
RR (Declercq, Germain & Henke, 1973), and tetra- 
phenylhydrazine, referred to as TPH (Hoekstra, Vos, 
Braun & Hornstra, 1975). The previous version of 
MULTAN solved these only with difficulty, whereas 
they are now solved with ease with a wide range of 
parameters used for the programs. For example, with 
250 E's for RR and the complete set of ~:2's, 56 sets of 
phases were generated. The 'best' (according to com- 
bined figure of merit) map showed 36 out of the 38 

Table 7. Number of phase sets generated by quadrant 
permutation and magic integer permutation as a 

function of the number, n, of unknown phases 
Also given is the lower bound of the r.m.s, error of  the phases in 
degrees. 

Magic-integer permutation 
n QP A~0rm s r = 2 A~01b r = 1.618 zi~01b 

1 4 26.0 4 26.0 4 26.0 
2 16 26.0 12 29.3 12 29.3 
3 64 26.0 28 32.5 20 36.8 
4 256 26.0 60 35.2 36 40.3 
5 1024 26.0 124 37.0 60 43.0 
6 4096 26.0 252 38-4 100 44.9 
7 16384 26.0 508 39.4 164 46.4 
8 65536 26.0 1020 40-1 268 47.5 
9 262144 26.0 2044 40-7 436 48.4 

I0 1048576 26.0 4092 41-1 708 49.1 
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independent non-hydrogen atoms and the highest 
spurious peak was 35th in order of height. Similarly, for 
TPH, with 270 E's and all the E2's, the 'best' map 
from the 56 sets of phases generated gave all 39 atoms 
of the structure. In this case, the highest spurious peak 
was 39th. The performance of the individual figures of 
merit for both of these structures is worth reporting. 
For RR, the best set of phases was first in ranking 
order on residual, second on q/0 and 15th on Ea, while 
the best set for TPH was first on residual, first on ~t 0 
and 18th on Za (out of 56). Since Ea is a measure of 
the internal consistency of the Z~ relationships, it is 
clear that the correct phases do not correspond to the 
most consistent set of E2's and, in fact, are a long way 
from this situation. As the phase-determination process 
relies initially upon the assumption that ~0h + ¢Ph-k + 
~0k = 0 for all h and k, this could be the reason why 
these two structures were previously rather difficult to 
solve. Copies of this latest version of M U L T A N  are 
available from the author upon request. 

Only the starting phases which are not restricted by 
space-group symmetry are given values by magic- 
integer permutation. Phases which can take on only 
two values because of symmetry are still given those 
two values in different phase combinations as before. 
For n phases assigned to magic integers, the number of 
sets produced is 

N l = 2 n+2 -- 4. (18) 

This number is obviously modified by the requirements 
of enantiomorph and origin fixing in the usual way. 
If the Fibonacci sequences were used, the number of 

phase sets produced would be 

8 { [1+2V/5] ' "+1 '  I 1 - - / 5 ]  ' ' + ' }  Nz= -X~ -- --4.  

(19) 

It is clearly of interest to determine how large an error 
can be tolerated in the starting phases in MULTAN,  
since any permitted increase in error results in a large 
decrease in the number of phase sets which must be 
generated. In general, when the phase sets are generated 
from a magic integer sequence based on an integer- 
geometric progression of limiting ratio r, the number 
of sets produced for n phases will be a function of 
r n . 
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Alternative methods of choosing the reflexions for use in direct methods are discussed. The original 
CONVERGE method, as implemented in the MULTAN system of computer programs, is compared with 
several variants and an iterative procedure for maximizing the ratio of triple-phase invariants to reflexions 
is described. 

Introduction 

Woolfson (1977) has outlined a computer program 
package for direct phase determination which, in time, 

* Part XII: Main (1978). 

may replace tangent-formula-based programs such as 
M U L T A N  (Main, Woolfson, Lessinger, Germain & 
Declercq, 1974). At the heart of M U L T A N  is the 
CONVERGE procedure (Germain, Main & Woolfson, 
1970) which determines the reflexions to be used in 
the starting set (origin and enantiomorph-defining 


